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Review
Sepsis is a complex inflammatory response to infection.
Microarray-based gene expression studies of sepsis
have illuminated the complex pathogen recognition
and inflammatory signaling pathways that characterize
sepsis. More recently, gene expression profiling has
been used to identify diagnostic and prognostic gene
signatures, as well as novel therapeutic targets. Studies
in pediatric cohorts suggest that transcriptionally dis-
tinct subclasses might account for some of the hetero-
geneity seen in sepsis. Time series analyses have
pointed to rapid and dynamic shifts in transcription
patterns associated with various phases of sepsis.
These findings highlight current challenges in sepsis
knowledge translation, including the need to adapt
complex and time-consuming whole-genome methods
for use in the intensive care unit environment, where
rapid diagnosis and treatment are essential.

Sepsis and its genomic influences
Since its introduction in the late 1990s, microarray-based
gene expression profiling has had a significant impact on
the field of medicine. In cancer biology, molecular subtypes
of diseases have been identified [1], as well as transcrip-
tional signatures predicting clinical outcome [2] and
response to specific therapies [3]. Useful biomarkers have
been found that in some cases can obviate the need for
genome-wide approaches, enabling the translation of gene
expression research into clinical practice. Nonetheless, the
impact of genome science remains far from pervasive,
especially in the intensive care unit (ICU), where diseases
evolve rapidly, resulting in systemic illness, organ failure,
and high mortality.
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Sepsis, one of the most prevalent diseases in the ICU, is
a clinical syndrome that is characterized by a systemic
inflammatory response to infection, typically bacterial in
origin. It is defined as documented or suspected infection in
the setting of a subset of four findings that describe the
systemic inflammatory response syndrome (SIRS) [4], and
it can progress rapidly, resulting in organ failure (severe
sepsis) or impaired tissue perfusion (septic shock). Sepsis
syndromes are both common and dangerous, with the
incidence increasing in both adults and children, and
mortality rates as high as 10–50% depending on age and
disease severity [5,6].

The genetic influences on the pathogenesis of acute
conditions such as sepsis are often under-appreciated,
but they are striking. In adoptee studies, death from
infection has been shown to be fivefold more heritable than
death from cancer [7]. The innate immune response that
accounts for the physiologic derangements of bacterial
infection is associated with altered expression of more
than 3,700 genes [8], making gene expression analysis a
potentially useful tool for discovery-oriented studies of the
pathogenesis of sepsis and severe infection. Published
findings based on this research paradigm are increasing;
furthermore, expression data are accumulating in publicly
available repositories, and a few active clinical trials
include a gene expression component (Figure 1).

Goals and challenges of transcriptome research in
sepsis
Gene expression analysis of sepsis is distinguished from
analyses of cancer and chronic diseases in a number of ways,
both conceptual and pragmatic (Figure 2). First, sepsis
investigators must make decisions about which tissues to
sample and at what time points, which in the absence of
additional clinical data or a priori hypotheses, can be arbi-
trary in nature. Tissue from the source of infection can be
difficult to sample directly because biopsies are seldom
practical in the critically ill. As an easily accessible compart-
ment of the immune system, whole blood and its various
leukocyte fractions have therefore been the source tissue of
interest in most gene expression studies of sepsis. The
findings from gene expression profiling of blood cells might
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Figure 1. Trends in gene expression profiling of sepsis. The bars represent the number of PubMed citations per year for the search term ‘gene expression AND sepsis’. The

trend line shows the number of individual microarray assays added each year to a publicly available repository of gene expression data (ArrayExpress). The sizes of the

circles at the bottom of the plot reflect the number of clinical trials initiated in each year, as identified by a trials registry (ClinicalTrials.gov, search terms ‘gene expression

AND sepsis OR septic shock OR severe sepsis’).
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not accurately reflect expression patterns from immune
cells resident in other tissues, such as alveolar macrophages
or splenic lymphocytes, although the significance of this
potential discordance remains uncertain [9,10].

Second, sepsis is a dynamic process within a relatively
narrow time period. Thus, whereas genomic changes can
occur in tumors over weeks or months, large-scale tran-
scriptional shifts in leukocytes have been shown to occur
within just a few hours of an inflammatory stimulus [8,11].
In the setting of blunt trauma, a condition with consider-
able inflammatory features that is often complicated by
sepsis, the leukocyte transcriptome is substantially altered
to upregulate inflammatory and pathogen recognition
pathways in the days and weeks after injury [12]. These
investigations into the functional trajectory of cellular
processes constitute a unique method by which to model
the dynamic pathophysiology of acute illness. Samples
2

collected repeatedly over the course of an illness episode
should therefore ideally be analyzed together rather than
in isolation in an attempt to describe illness trajectory and
differentiate responses to treatment. Unlike with trauma,
the precise onset of sepsis can be difficult to pinpoint
accurately, introducing further complexity when compar-
ing time course gene expression profiles from different
patients with sepsis.

Third, whereas gold standard diagnostic labels can be
arrived at for most tumors on the basis of anatomic and
molecular pathology findings, the diagnosis of sepsis is
predominantly a clinical one. Moreover, the criteria on
which the diagnosis is based lack specificity, with more than
40% of cases having negative bacterial cultures [13]. The
absence of reliable classification complicates statistical ana-
lyses of gene expression data that use supervised methods to
detect differences in expression between groups.
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Figure 2. Overview of gene expression profiling in sepsis. (A) Because sepsis syndromes are characterized by rapid shifts in gene expression over hours and days, blood

samples can be collected for analysis at various time points. Multiple samples taken over the course of resuscitation, stabilization, and convalescence can be used to

generate time series of gene expression. (B) After samples are collected, RNA can be extracted either directly from whole blood or from different leukocyte fractions. RNA

transcript levels are derived from gene expression microarrays. (C) Bioinformatics pathways can be used to compare gene expression profiles between two or more groups

of patients (e.g., sepsis and non-infectious systemic inflammatory response syndrome), resulting in a list of differentially expressed genes, and their associated pathways.

Unsupervised machine learning methods, including partitional clustering algorithms, can be used to identify previously unrecognized sepsis subclasses. Expression data

from multiple time points can be analyzed together to generate expression trajectories, which may differ between patients. The interpretation of differences in gene

expression is facilitated through comparison with clinical phenotypes derived from patient data collected from electronic medical records or patient registries, or in the

context of a clinical trial. (D) Unlike with diseases managed in the outpatient setting, the treatment of sepsis relies on diagnostic testing that can rapidly return easily

interpreted results. High-dimensional gene expression data must therefore be ‘downsized’ to more easily derived and understood signals. Strategies include using serum

biomarker assays to develop patient classifiers, generating gene expression mosaics that visually represent complex expression signals, and deploying sophisticated

multiplex assays that measure a limited number of transcripts using molecular barcoding technology. Abbreviations: PBMCs, peripheral blood mononuclear cells; PMNs,

polymorphonuclear neutrophils; WB, whole blood.
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Last, whole-genome approaches to sepsis research must
include strategies for ‘downsizing’ the methods used, from
high-dimensional, resource- and time-intensive gene
expression assays to rapid, cost-effective diagnostic tests
that can be deployed at the point of care. Whereas findings
from gene expression studies in cancer can translate to
clinical practice via immunohistochemical staining of
pathologic specimens, targeted genotyping, or other com-
plex and time-consuming assays, these techniques are
impractical in the management of sepsis. Useful assays
must reflect the rapidly evolving, dynamic nature of sepsis,
the need for quick information in the acute resuscitative
phases of this condition, and the necessity that individual
samples be analyzed at any time of day or night, with short
3
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turnaround time, and without waiting to be batched with
other specimens.

Experimental designs
As a primarily immunological phenomenon, sepsis is often
studied by examining leukocytes, including ex vivo immu-
nostimulation experiments. Patients with sepsis syndromes
manifest various dynamic shifts in leukocyte populations,
often transitioning between states of leukocytosis and leu-
kodepletion, and exhibiting differences in the relative abun-
dance of granulocytes, lymphocytes, and specialized subsets
thereof. Each of these cellular subtypes exhibits a distinct
gene expression pattern tailored to the specialized function
of the respective cell type [14], with expression profiles from
whole blood representing a weighted sum of these patterns.
Because different cellular compartments of the blood per-
form different immunological functions in response to infec-
tion, leukocyte gene expression in sepsis is cell-type specific.
The set of genes that distinguishes sepsis from non-infec-
tious inflammation in the neutrophils of the innate immune
system demonstrates little overlap with the similarly
focused set of genes identified from the lymphocytes of
the adaptive immune system [15,16],

The use of whole blood to derive gene expression data in
sepsis has the pragmatic advantage of straightforward
sample collection, minimal preprocessing, and limited
induction of expression artifacts related to isolation of
leukocyte subsets [17]. Most clinical studies in both adults
and children have used either whole blood or peripheral
blood mononuclear cells (PBMCs). In the case of whole
blood studies, statistical methods have been used to
account for the relative abundance of each leukocyte sub-
type in the sample and to attribute gene expression find-
ings to specific populations of cells [18].

Insights into molecular mechanisms of sepsis
Initial studies of gene expression in sepsis were largely
exploratory in nature, aiming to describe the complex
immunologic and inflammatory pathways that character-
ize this condition. Early insights came from studies of
healthy volunteers exposed to bacterial endotoxin
[8,11,19], which revealed significant changes in the tran-
scription of more than 3,700 genes as soon as 2 hours after
endotoxin exposure. Early after endotoxin exposure,
pathogen recognition cell surface receptors, including
those from the Toll-like receptor (TLR) family, are up-
regulated, along with various proinflammatory cytokines
and chemokines, such as tumor necrosis factor (TNF),
interleukin-1a (IL-1a), IL-1b, CXC chemokine ligand 1
(CXCL1), CXCL2, monocyte chemotactic protein 1 (MCP-
1), and IL-8 [8,11]. These changes are accompanied by the
activation of signal transduction pathways including the
nuclear factor-kb (NF-kb), mitogen-activated protein
kinase (MAPK), Janus kinase (JAK), and signaling trans-
ducer and activator of transcription (STAT) pathways. In
parallel, signaling to restrain the immune response is
increased, both by the upregulation of suppressor of cyto-
kine signaling genes [e.g., suppressor of cytokine signaling
3 (SOCS3)] and the downregulation of cytokine expression
itself. Expression patterns return to baseline within
24 hours of endotoxin exposure.
4

Unlike with tightly controlled experiments in healthy
subjects, clinical studies of gene expression in sepsis must
confront substantially more uncertainty, heterogeneity,
and complexity in the inflammatory manifestations of
infection.

Expression patterns are modulated by a number of
factors, such as age, gender, and ethnicity, the presence
of comorbidities, the timing of inflammatory stimulus, and
the patient’s state of immune activation at the time of
infection. This is reflected in the results of clinical studies
of gene expression in adults with sepsis syndromes. A
systematic review of a dozen such studies suggests nearly
universal upregulation of the pathogen recognition and
signal transduction pathways identified in controlled
endotoxin experiments, but it provides a far more mixed
picture when it comes to the pro- and anti-inflammatory
pathways mediated by genes that govern lymphocyte
differentiation, antigen presentation, and cytokine
expression [20]. Disagreement between studies in this
regard might reflect differences in patient population, in
that trauma patients who are otherwise healthy might be
predisposed to immunostimulation following injury,
whereas patients with primary sepsis exhibit a greater
degree of immunosuppression [18,21].

Gene expression studies have been used to identify novel
therapeutic targets in sepsis on the basis of molecular
pathways that are differentially expressed between cases
and controls, or between survivors and non-survivors. Com-
plementing findings from basic science research, animal
studies, and clinical trials in humans [22], gene expression
studies have highlighted the importance of zinc homeostasis
in immune functioning, particularly among children with
sepsis syndromes [23]. Children admitted to the ICU with
septic shock have been shown to exhibit diminished expres-
sion of numerous genes that influence or rely on zinc home-
ostasis. Evidence suggests that this pattern is more evident
in a certain subset of patients and is associated with poor
outcomes [24]. Clinical studies of zinc supplementation have
demonstrated salutary effects on the incidence and severity
of certain infections in both children and the elderly [25–27],
but in both adult and pediatric ICU patients, larger rando-
mized trials of mixed micronutrient supplementation that
included zinc showed no significant effects on the incidence
of infection [28,29].

One particular family of zinc-related proteins has been
shown to be consistently overexpressed in sepsis and septic
shock. The matrix metalloproteinases (MMPs) are a series
of proteases that degrade extracellular matrix, inflamma-
tory cytokines, and other proteins, thereby mediating a
variety of immunologic and neoplastic processes [30,31].
Gene expression studies, along with confirmatory serum
assays, have shown that MMP-8 and MMP-9 are upregu-
lated in injury and sepsis, correlating in some cases with
disease severity [11,32–34]. Consistent with these clinical
observations, MMP-8-null mice and wild-type mice treated
with a pharmacological inhibitor of MMP-8 have a survival
advantage when subjected to a model of sepsis [32].

Influence of demographic factors
Although patient age, gender, and ethnicity have been
accounted for in traditional clinical and basic science
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research in sepsis, the importance of these demographic
factors in gene expression studies has yet to be fully
explored. Nonetheless, there is reason to believe that
demographic features exert considerable effects on gene
expression patterns in sepsis. Ethnic background is known
to be a strong determinant of gene expression in general
[35], and there is some evidence to suggest its influence on
sepsis in particular. In one small study examining gene
expression patterns among critically ill patients with ven-
tilator-associated pneumonia (VAP), far more genes varied
between ethnic groups (Caucasian or African-American)
than between groups sorted by age or gender [36]. Epide-
miological studies suggest differences in sepsis incidence
and outcomes among patients with different ethnic back-
grounds, although the extent to which these findings
reflect genomic differences is not known [37].

Concurrent with evolving immune function, both early
in development and later in life, different genetic responses
to sepsis are seen among various patient age groups. In one
analysis combining results from five separate studies,
researchers identified differences in gene expression
among pediatric patients with septic shock. Full-term
neonates (�28 days) were shown to have gene expression
patterns distinct from those of infants (1 month to 1 year),
toddlers (2–5 years), and school-aged children (�6 years)
when assessed within 24 hours of ICU admission [38].
Importantly, and in contrast to older children and adults,
these results suggest that neonates not only failed to
mount a robust inflammatory response but also demon-
strated downregulation of antigen presentation and NF-kb

pathway genes, and an overall decrement in immune
response to infection. Reduced expression of triggering
receptor expressed on myeloid cells 1 (TREM1) pathway-
related genes was also seen, suggesting that neonates
might have limited capacity to amplify immune signals
related to pathogen recognition and might be less respon-
sive to novel therapies targeting this pathway in septic
shock [39,40]. This study included a relatively small num-
ber of neonates (n = 17), and the findings would be bol-
stered by validation in a dedicated prospective study.

At the other end of the age spectrum, there are fewer
whole-genome data about the effects of ageing on immune
functioning in sepsis. In one mouse study examining indi-
vidual cytokine levels using a cecal ligation and puncture
(CLP) model of sepsis, older mice showed more pronounced
local and systemic inflammatory responses compared to
younger mice with similar survival rates [41]. Although
gender is known to influence gene expression patterns in
other conditions such as ischemic heart diseases (albeit
modestly) [42], sex-specific differences in gene expression
in sepsis remain largely unexplored. Complex interactions
between demographic factors are also likely to influence
gene expression in sepsis.

Gene expression and sepsis subtypes
One of the most clinically relevant questions following the
diagnosis of sepsis is that of which invading pathogen is
responsible for the acute infection. Proper knowledge of the
inciting cause is useful in selecting appropriate antimicro-
bial agents and identifying uncontrolled sources of infec-
tion. Sepsis arising from different types of organisms,
including Gram-positive bacteria, Gram-negative bacteria,
and fungi, can be clinically indistinguishable, and both the
yield and lag time of microbial cultures limit their use in
practice [4,13]. Because the molecular pathways under-
pinning the cellular immune response to these various
types of infection have distinctive features, gene expres-
sion profiling has been investigated as a means to identify
culprit organisms in patients with sepsis.

Early studies in animal models and ex vivo models of
human cell types suggest that regardless of the invading
pathogen, a core group of co-expressed genes is upregu-
lated in the face of infection, constituting a so-called ‘com-
mon host response’ to sepsis [43,44]. This common
response, which is expressed in a variety of cell types,
includes the activation of inflammatory mediators and
signal transduction pathways, as well as negative feedback
pathways and apoptotic pathways that put infected cells in
a state of ‘high alert’, whereby programmed cell death can
be initiated in the event of progressive infection [43].
Whereas targeted experiments suggest that isolated path-
ways coordinate the immune response to Gram-positive
and Gram-negative infections, microarray experiments
suggest considerable overlap between these types of infec-
tion. Both TLR2 (which is associated with the transcrip-
tional response to Gram-positive infections) and TLR4
(which binds lipopolysaccharide from Gram-negative bac-
teria) initiate signals that culminate in the common host
response [43]. This result is reflected in clinical studies of
gene expression in sepsis, which for the most part have
shown few differences in expression patterns between
patients infected with different types of bacteria [36,45].

In the pediatric population, gene expression data have
been used to distinguish bacterial infections from viral
infections such as influenza A [46]. Not surprisingly,
patients with influenza were identifiable on the basis of
increased expression of interferon (IFN) pathways. Up to
one-third of patients with bacterial sepsis also demon-
strated upregulation of IFN genes, suggesting the possi-
bility of a preceding or concurrent viral infection in these
cases. Differences were also found between patients with
Gram-positive infections and those with Gram-negative
infections. Beyond its focus on pediatric rather than adult
patients, this study differed from those that found no
differentially expressed genes between Gram-positive
and Gram-negative sepsis. Instead of using neutrophils,
the investigators generated gene expression profiles from
PBMCs, which, because of their pleomorphism, might be
expected to better reflect pathogen differences. These find-
ings highlight the importance of considering tissue type
when designing and interpreting gene expression studies
in sepsis.

In addition to determining what type of infection has
triggered a sepsis response, it might be equally important
to determine the nature of the response mounted by an
individual patient. The existence of heretofore unrecog-
nized sepsis subtypes is suggested by the heterogeneity
of physiologic and molecular phenotypes encompassed
under the non-specific clinical definition of sepsis. This
inadvertent case mixing in clinical studies leads to indis-
tinguishable survival curves, overlapping histograms of
measured outcomes, and a deficit of actionable evidence.
5
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The discovery of sepsis subtypes has thus been identified
by some as a key goal in sepsis research [47,48].

This problem is inherently one of unsupervised machine
learning, in which patients are grouped according to simi-
larities across multiple dimensions of gene expression data
rather than clinical labels assigned by investigators. Var-
ious cluster identification algorithms have been used for
this purpose. In one such study, pediatric patients with
septic shock were partitioned into distinct gene expression
clusters on the basis of the expression levels of genes that
differentiated septic patients from a group of non-septic
controls [24]. Hierarchical clustering was used with an a
priori decision to designate the second-order branch points
as distinct clusters. This approach resulted in 3 subclasses
of septic shock (subclasses A, B, and C), with nearly 7,000
genes differentially expressed between them. Clinical phe-
notyping of the subclasses after clustering showed signifi-
cant differences in important clinical outcomes, with
patients in subclass A having more severe manifestations
of sepsis, a greater degree of organ injury, and higher
mortality. Patients in this subclass also tended to be
younger, with a median age of 3.6 months, compared to
4.3 years for subclass B and 2.0 years for subclass C. From
a genomic standpoint, subclass A was characterized by a
relative downregulation of adaptive immune pathways
and glucocorticoid receptor signaling. In a separate, multi-
center validation study, 82 patients from an independent
cohort were grouped according to their level of expression
of the top 100 class-defining genes identified in the first
study. Patients from subclass A again showed a greater
severity of illness, a trend towards higher mortality, and
younger median age [49].

Although no prospective studies in adults have been
dedicated to sepsis subtype discovery, a post hoc analysis of
gene expression profiles generated in the course of other
investigations suggests their existence. Using separate
derivation and validation cohorts, patients were clustered
using a partitioning around medioids (PAM) algorithm
based on the expression levels of a subset of genes identi-
fied in the literature as being meaningful in sepsis and
septic shock [50]. The existence of two distinct clusters was
best supported by the data, and although no significant
clinical differences were found between subtypes, there
were important differences in the expression of genes
involved in inflammatory and pathogen recognition path-
ways, as well as key pharmacogenes involved in the meta-
bolism of drugs used commonly in sepsis.

‘Downsizing’ genome-wide data for clinical use
Multidimensional gene expression platforms that sample
thousands of genes at once are ideally suited for discovery-
oriented tasks in sepsis research. Their use in clinical
practice, however, is limited by a number of practical con-
siderations. To be useful in the evaluation and treatment of
patients with sepsis, assays must be widely available, rapid,
repeatable, consistent, and inexpensive. As such, there is a
need to ‘downsize’ the high-dimensional data generated by
gene expression microarrays to more targeted signals that
can be produced closer to the point of care.

The most reductive approach to this problem is to use
gene expression microarray data to identify individual
6

biomarkers that distinguish patient subsets of interest.
Typically, this involves examining genes with the highest
fold-change difference in expression between patients with
sepsis and those with non-infectious SIRS. In one pediatric
study, gene expression profiling was used to identify class-
predictor genes distinguishing SIRS with negative bacter-
ial cultures from sepsis with positive bacterial cultures
[51]. The most predictive gene was Epstein–Barr virus-
induced gene 3 (EBI3), which encodes a subunit of IL-27;
high levels of IL-27 in the serum had high specificity and
positive predictive value (>90%) for the diagnosis of sepsis.
However, a comparable study in adults showed that serum
IL-27 levels were relatively less specific for sepsis, and IL-
27 was outperformed as a biomarker by procalcitonin,
which is already used in clinical practice [52].

Biomarkers identified by gene expression profiling have
also been used to stratify patients with sepsis according to
mortality risk. The IL8 gene was shown to be upregulated
in nonsurvivors of pediatric septic shock, with elevated
serum levels of IL-8 significantly increased as compared to
survivors and controls [23]. Again this biomarker was
shown to have less predictive value in adults with sepsis
[53]. Although there were methodological differences
between the pediatric and adult studies in the case of both
IL-27 and IL-8, these findings again underscore the influ-
ence of age in immune functioning, and the importance of
considering age in the design and analysis of gene expres-
sion studies in sepsis.

In other microarray studies, CX3C chemokine receptor 1
(CX3CR1; fractalkine receptor) was shown to be upregu-
lated in sepsis survivors compared to non-survivors [54],
and serum levels of its ligand, CX3CL1, were found to be
increased in patients with sepsis, as compared to healthy
controls [55]. CC chemokine ligand 4 (CCL4; also known as
MIP-1b) has also been identified as a potential biomarker
on the basis of differential gene expression and was shown
to have a high negative predictive value for mortality in
pediatric septic shock [56].

Although variously sensitive or specific in certain popu-
lations, these single-marker diagnostic strategies do not
have well-rounded performance characteristics that would
justify their broad use in clinical practice [57]. Moreover,
the use of individual biomarkers in isolation in many ways
defeats the purpose of using high-throughput technologies
such as gene expression microarrays to study multifaceted,
complex conditions such as sepsis. Because biomarkers are
traditionally identified by knowledge-based approaches
predicated on known biological functions and pathways,
such searches tend to leave unexamined scores of other
proteins that might be useful alone or in combination, but
whose biological function in sepsis has yet to be fully
elucidated [58]. One strategy to overcome this bias is to
leverage the considerable coverage of gene expression
microarrays to identify candidate biomarkers that seem
to be promising on the basis of statistical rather than
biological features.

In the Pediatric Sepsis Biomarker Risk Model (PERSE-
VERE) project, investigators used such an approach to
derive and validate a panel of serum biomarkers to assign
a mortality probability in pediatric sepsis [57–59]. Genes
differentially expressed between sepsis survivors, sepsis
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non-survivors, and healthy controls were identified by
analysis of variance (ANOVA) and further refined by post
hoc pairwise comparisons to identify 137 candidate bio-
marker genes. These were cross-referenced with a list of
4,397 candidate genes identified using support vector
machine (SVM) classifiers based on sepsis mortality and
further reduced by selecting genes whose protein products
could be easily measured in the blood [58]. The final panel
of 12 biomarkers was subsequently used to derive a clas-
sifier based on classification and regression tree (CART)
analysis and validated in a separate patient cohort. The
model had adequate sensitivity (91% in the derivation
cohort, 89% in the validation cohort), but lacked specificity
(86% in the derivation cohort, 64% in the validation
cohort), and had an area under the receiver operating
characteristic (ROC) curve of 0.759 in the validation cohort
[59]. Recently, prospective validation of an updated model
yielded an ROC of 0.811 [60], and an analogous model was
derived and tested in adult populations [61].

The shortcomings in gene expression-derived biomarker
performance are likely to reflect a complex interplay of
individual genes and transcripts in sepsis, to say nothing of
the post-translational modifications and protein interac-
tions that exert influence on function. Cellular signals in
sepsis are dynamic, changing rapidly with inflammatory
conditions and an evolving immunologic milieu. The goal of
reducing genome-wide signals to individual biomarkers, or
even groups of biomarkers used in combination, might
therefore be difficult to achieve. Some investigators have
instead focused on developing gene signatures that com-
bine signals from dozens or hundreds of genes to be used as
a filter in identifying patients with sepsis from those with
non-infectious SIRS, and in predicting outcomes of sepsis
syndromes. In one such study, a 138-gene signature dis-
tinguished sepsis from SIRS with sensitivity and specifi-
city in the validation cohort of 81% and 79%, respectively
[16].

Translating genome-wide assays for clinical use
involves developing tools that can be deployed in the
unpredictable and dynamic clinical environment of the
emergency department or ICU. New methods of data
representation are needed to convey key signals contained
within high-dimensional data to front-line clinicians both
quickly and unambiguously. Along these lines, investiga-
tors have tested the use of novel data visualization meth-
ods such as ‘gene expression mosaics’ that convey high-
dimensional gene expression data in 2D colored patterns
[62]. Expression mosaics have been developed in the study
of pediatric septic shock subclasses and have been shown to
be useful in both computer-based and clinician-based inter-
pretation of expression patterns [49,63]. Among clinicians
without specific training in the interpretation of these pat-
terns, gene expression mosaics were sorted according to
sepsis subclass (A, B, or C) with overall k value for agree-
ment of 0.81 [63].

In an effort to develop more scalable solutions for gene
expression analysis in acute care, investigators have also
used multiplexed color-coded probes, so-called ‘molecular
barcodes’, to directly measure mRNA transcript abun-
dance in samples of interest (NanoString nCounter sys-
tem) [64]. On the basis of microarray gene expression
findings from the leukocyte fractions of 167 trauma
patients, researchers derived an expression signature of
63 genes that varied most between patients with uncom-
plicated, intermediate, and complicated clinical courses
following trauma [34]. To create an assay that could rea-
sonably be used in clinical practice, leukocytes were iso-
lated by means of red cell lysis in microfluidics chambers,
and samples were analyzed using the NanoString platform
to evaluate expression of the 63 signature genes. These
results were further downsized to a single expression
metric, the difference from reference value (DFR), based
on a summation of expression differences for each gene,
from age-, gender-, and ethnicity-matched controls.
Results were generated within 8 to 12 hours, showed good
agreement with microarray expression values, and per-
formed better than both microarray-derived DFR and
conventional clinical severity of illness scores.

Temporality of gene expression in sepsis
Most clinical studies of gene expression in sepsis have been
based on the analysis of a single time point in the illness
trajectory or on the comparison of an early time point with
a later one. However, genomic shifts in response to inflam-
mation are known to occur rapidly, as seen in clinical
studies of trauma patients [12] or experimental studies
of healthy subjects exposed to endotoxin [8,11]. Unlike in
these cases, the time of onset of the inflammatory stimulus
in sepsis cannot be accurately known, resulting in consid-
erable uncertainty regarding the timing of sampling with
respect to the ebb and flow of the immunological response.
Many studies include protocols to collect samples for gene
expression analysis within 24 hours of admission to the
ICU; however, patients are admitted to the ICU at various
stages of sepsis and can transition from one stage to the
next even within the first 24 hours of their stay. The extent
to which gene expression is being compared across similar
genomic, molecular, and pathophysiologic epochs in these
studies is thus uncertain.

The importance of timing in sepsis gene expression
analysis is illustrated by one recent study of five pediatric
patients with severe sepsis and septic shock due to menin-
gococcal meningitis [65]. In this work, expression levels of
key genes differed between patients at various time points.
Further, the overall contour of expression trajectories of
key genes across the entire 48-hour period also differed.
These differential trajectories were seen for some genes
that have been investigated as biomarkers in sepsis, sug-
gesting that certain biomarkers might be more useful in
some patients than in others, and might be more useful at
certain stages of illness than at others.

A number of statistical methods have been developed to
analyze time course gene expression data. Approaches
include Markov models [66–68], ANOVA [69], and the
use of cubic splines to model changing expression levels
over time [70]. Time course gene expression data from
trauma and burn patients have been used to develop
statistical methods for the analysis of leukocyte gene
expression over time, such as the riboleukogram, which
uses principal components analysis to graphically repre-
sent a patient’s genomic trajectory over time [36,71].
Results from these studies suggest that genomic profiles
7



Table 1. Statistical methods and other analytic tools used in gene expression profiling of sepsis

Analysis Description Refs

Single time point data

Univariate Student’s t-test A t-test is performed for each gene represented in the experiment to identify those that are

differentially expressed between two groups (e.g., ‘sepsis’ and ‘control’). Correction of significance

level is required to reflect the testing of multiple hypotheses

[15,16,45,46]

Significance analysis of

microarrays (SAM)

Identifies genes that are differentially expressed between two or more groups. SAM uses gene-

specific t-tests to assign a score based on the differences in expression levels between groups, relative

to the standard deviation [73]. A tuning parameter is used to select a tolerable false discovery rate

[8]

K-means clustering Samples are partitioned into a user-specified number of clusters according to their proximity to one

another in n-dimensional gene space (where is n is the number of genes whose expression levels are

used in the analysis)

[9,12,24]

Extraction of Differential

Gene Expression (EDGE)

Uses an optimal discovery procedure to identify genes that are differentially expressed between user-

specified groups [74]

[12,36]

Linear mixed models Each gene is modelled individually with expression levels as the dependent variables and any number

of phenotypic features (such as group assignment, age, and day of sample) used as independent

variables. Differential expression between conditions of interest can be inferred, controlling for

potential confounders

[18]

Hierarchical clustering Similar expression patterns are grouped, forming a dendrogram that can be used to select clusters.

Clustering can be done according to similarity between genes, between samples, or both. Results are

often depicted as a heatmap

[23,24,45,46]

Riboleukogram This approach uses a mathematical technique similar to principal components analysis in order to

reduce the dimensionality of the data and compare patients based on average expression vectors over

time

[36,71]

Classification and

regression trees (CART)

Optimal predictors and cutoff values are determined by means of an algorithm that evaluates all

possible combinations. CART has been used to identify a diagnostic panel of serum biomarkers based

on findings from whole-genome expression profiling

[59]

Multiple time point data

Timecourse ANOVA

(TANOVA)

Accommodates multifactorial data to determine whether variations in gene expression over time are

related to the condition of interest, or an independent factor (e.g., age)

[69]

Average time curve This method involves determining whether the population average time course is best represented by

a flat line, suggesting no difference in expression over time, or by a curve (cubic splines), indicating a

significant change over time

[70]

Visualization

Gene expression mosaics The Gene Expression Dynamics Inspector (GEDI) platform is used to generate a color representation

of gene expression patterns based on self-organizing maps [58]. These expression mosaics lend

themselves to human pattern recognition, as well as computer-based recognition

[49,63]

Box 1. Outstanding questions

� Which source tissue (i.e., whole blood, neutrophils, or peripheral

blood mononuclear cells) is best suited for generating the gene

expression data needed to address a particular biological

hypothesis?

� How should time series gene expression data be collected,

analyzed, and merged with clinical outcome data?

� What are the optimal transcriptome-based definitions and classi-

fications of sepsis syndromes?

� Can gene expression events early in the course of sepsis predict

later transcriptional events, response to therapies, and clinical

outcome?

� What is the role of next-generation sequencing technologies in

the transcriptome profiling of sepsis syndromes?
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in sepsis oscillate around a baseline immune attractor
state. Early results support an increased between-patient
variance in gene expression at the height of the acute
inflammatory phase, with differences between individuals
diminishing as patients return to a baseline state of health
[71]. As these statistical and computational methods
evolve, comparison of gene expression trajectories in sepsis
may provide even greater insight into the molecular phy-
siology of sepsis than comparison of gene expression at a
single time point.

Concluding remarks and future perspectives
The advent of high-throughput genomic technologies such
as gene expression microarrays have made possible the
study of the complex, dynamic changes in the host tran-
scriptome as it responds to severe infection. Initial studies
have added substantially to our understanding of sepsis
pathophysiology, identified different molecular pheno-
types of sepsis, and suggested novel targets for new sepsis
therapies. Nonetheless, conclusions from these initial stu-
dies have been far from unanimous. Discrepancies might
be attributable to various technical factors, including lack
of agreement between microarray platforms in earlier
studies, and an abundance of different statistical methods
and bioinformatics pathways used to conduct analyses
(Table 1). A lack of standardization in terms of timing of
8

sampling and tissue source used further complicates direct
comparisons between studies. Importantly, many analyses
have been based on small sample sizes and need to be
confirmed in larger cohorts. As microarray technology and
bioinformatics methods evolve, concordance is likely to
increase.

Additional challenges remain (Box 1), including the
need for more comprehensive clinical data by which to
annotate gene expression patterns, and for more reliable
diagnostic categories with which to label patients with
sepsis syndromes. These should not only include basic
‘case/control’ and ‘survivor/non-survivor’ categories but
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also more nuanced labels related to illness trajectory and
response to therapeutic interventions. New methods con-
tinue to be developed, including RNA sequencing, micro-
RNA sequencing [72], and evaluation of microbial nucleic
acid signals.
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